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Abstract

In order to diagnose TMJ pathologies, we developed and tested a novel algorithm, MandSeg, 

that combines image processing and machine learning approaches for automatically segmenting 

the mandibular condyles and ramus. A deep neural network based on the U-Net architecture was 

trained for this task, using 109 cone-beam computed tomography (CBCT) scans. The ground truth 

label maps were manually segmented by clinicians. The U-Net takes 2D slices extracted from 

the 3D volumetric images. All the 3D scans were cropped depending on their size in order to 

keep only the mandibular region of interest The same anatomic cropping region was used for 

every scan in the dataset. The scans were acquired at different centers with different resolutions. 

Therefore, we resized all scans to 512×512 in the pre-processing step where we also performed 

contrast adjustment as the original scans had low contrast. After the pre-processing, around 350 

slices were extracted from each scan, and used to train the U-Net model. For the cross-validation, 

the dataset was divided into 10 folds. The training was performed with 60 epochs, a batch size 

of 8 and a learning rate of 2×10−5. The average performance of the models on the test set 
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presented 0.95 ± 0.05 AUC, 0.93 ± 0.06 sensitivity, 0.9998 ± 0.0001 specificity, 0.9996 ± 0.0003 

accuracy, and 0.91 ± 0.03 F1 score. This study findings suggest that fast and efficient CBCT image 

segmentation of the mandibular condyles and ramus from different clinical data sets and centers 

can be analyzed effectively. Future studies can now extract radiomic and imaging features as 

potentially relevant objective diagnostic criteria for TMJ pathologies, such as osteoarthritis (OA). 

The proposed segmentation will allow large datasets to be analyzed more efficiently for disease 

classification.

I. INTRODUCTION

Osteoarthritis (OA) is a top cause of chronic disability, and with aging, the disease 

progresses to considerable structural and functional alterations in the joint. If the condition 

is detected earlier, treatment can prevent the large joint destruction; however, there is a 

lack of studies focusing on the early diagnosis [1–3]. There is no cure for OA, and current 

treatments attempt to reduce pain and improve function by slowing disease progression. The 

Temporomandibular joints (TMJ) are small joints that connect the lower jaw (mandible) 

to the skull. After chronic low back pain, TMJ disorders (TMD) are the second most 

commonly occurring musculoskeletal conditions, resulting in pain and disability, with an 

annual cost estimated at $4 billion [4].

The recommended Diagnostic Criteria for TMD protocol [5] include clinical and imaging 

diagnostic criteria for differentiating health and disease status, and recent studies have 

indicated the biological markers may also improve the diagnostic sensitivity and specificity 

[6]. However, feature extraction from Cone-Beam Computed Tomography (CBCT) images 

remains time consuming before this integrative model can be applied in larger scale studies.

There are some commercial or open-source tools such as ITK-SNAP [7] and 3D-Slicer [8] 

that clinicians use to interactively segment condyles in each individual image at a time 

and calculate some parameters of images. However, this process is time-consuming and 

challenging for clinicians due to low signal/noise ratio of the large field of view CBCT 

images commonly used in dentistry [9]. Therefore, our goal is to develop a method to 

automatically segment the mandibular ramus. More efficient and reproducible mandibular 

segmentation will help clinicians extract features from the mandibular condyles and ramus, 

analyze changes in the shape and anatomy of the condyles over time to properly diagnose 

the disease, as well as plan the anatomy for surgical interventions. This would facilitate the 

study of the TMJ OA and could help prevent the disease progression and predict the disease 

at early stages.

Manual, user interactive or semi-automatic methods use different imaging modalities such 

as magnetic resonance (MR) imaging, computed tomography (CT), cone-beam computed 

tomography (CBCT), ultrasonography, and conventional radiography [10–17] to segment 

the mandibular condyle and ramus with applications for TMJ and dentofacial treatment 

planning and assessment of outcomes. Up to date, automatic segmentation tools for condylar 

and thin bone cortical areas of the mandibular ramus have been limited to high resolution 

CBCT images [18] or small sample size acquired with the same scanning protocol [19]. 

The algorithm presented in this paper aimed to create a fully automated method to segment 
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the ramus and condyle out of large field CBCT scans of the head from 4 different clinical 

centers and scanning acquisition protocols. The dataset is presented in Section II and the 

different steps of the proposed method are explained in Section III. We then show the 

experimental results of the proposed method and compare them with condyles manually 

segmented by clinician experts. Finally, conclusion remarks are presented in Section IV.

II. DATASET

We used de-identified datasets from the University of Michigan, State University of Sao 

Paulo, Federal University of Goias and Federal University of Ceara, that consisted of 3D 

large field of view scans CBCT scans of the head of 109 patients. At the different clinical 

centers, the images were acquired with different scanners, spatial resolutions varying from 

0.2 to 0.4mm3 voxels, and image acquisition protocols.

The dataset used in this study contains both patients with radiographic diagnosis of 

osteoarthritis and healthy condyles. The inclusion of both OA and non-OA patients in the 

dataset helps develop a more generalizable segmentation model across healthy and diseased 

patients. The images were first interactively segmented by clinicians using ITK-SNAP 

(3.8.0) or 3D Sheer (4.11). These segmentations were used as ground-truth to train and 

evaluate the performance of the proposed method.

III. Proposed method and Experimental results

The proposed method developed to segment the mandibular condyles and ramus out of 

CBCT scans is based on image processing and machine learning approaches that are 

summarized in the flowchart shown in Figure 1.

We first describe image pre-processing to deal with the quality of the images and region 

of interest. After that, we explain the machine learning techniques used to segment the 

mandibular condyles and ramus and to detect its contours out of the craniofacial structures. 

After identification of the mandibular condyles and ramus contours, we perform post-

processing for artifact removal and improvement the segmentations quality.

A. Pre-processing

Figure 2 shows an example of a cross-sectional image from a raw large field of view 

CBCT scan with the mandibular ramus and condyles on each side of the image. The head 

large field CBCT scans were low contrast images, therefore we adjusted the contrast to 

improve the training of our deep learning model and help it to make a better prediction. 

We performed slice cropping according to the number of slices in each scan to keep 

only the region of interest where the condyles are in the large field of view scans. The 

algorithm selected the same anatomic cropping region for every 3D scan in the dataset, then 

split it into 2D cross-sections, and every cross-section was resized to 512 × 512 pixels to 

standardize the dataset. Each CBCT scan resulted in 300-400 cross-sectional images after 

the pre-processing, depending on the number of slices composing the scan, which variates 

with the acquisition protocol used.
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Figure 3 shows an example of a CBCT image after pre-processing. The output of the 

pre-processing is used in the next step where we train our deep learning model.

B. U-Net training

We used the images obtained from the pre-processing to train a U-Net model. This 

network was first developed for biomedical image segmentation and later utilized in other 

applications, such as field boundary extraction from satellite images [20].

We split the dataset into 2 parts: 90 patients CBCT scans for training (approximately 80% 

of the total dataset) and 19 patients CBCT scans for testing (approximately 20% of the 

total dataset). We performed a 10 folds cross-validation on the training set and used the 

testing set to evaluate the model performances. Each fold of the cross-validation contained 

the cross-sectional images from 9 scans. We equally distributed the scans into the different 

folds according to the acquisition center, to avoid the overfitting of the model.

The models were trained during 60 epochs to ensure that the model would converge, with 

a batch size of 8, due to computer performance limitations, and a learning rate of 2×10−5, 

to be able to determine with precision the most appropriate epoch. We used Tensorboard 

to measure and visualize the loss and accuracy of the model and selected the epoch of the 

model before it overfitted.

We gave the high-contrast cross-sectional images from the testing dataset to every trained 

model for them to predict a segmentation of the condyles for every image.

C. Post-processing

The post-processing consisted in binarizing the output images coming from the U-Net model 

using a threshold based on Otsu’s method, resize them to their original size, and adding 

them to reconstitute the original 3D scan. We then calculated the volume of each component 

on the 3D image, and used a volumetric threshold depending on the size of the image to 

remove small objects (artefacts) that are not part of the condyle.

The performance of the proposed segmentation method was evaluated by comparing the 

output of the method to the ground truth, scans manually segmented by clinicians.

Figure 4 shows both the manual segmentation by the clinicians and the automatic 

segmentations output by our algorithm.

We used Area Under the Receiver Operating Characteristic Curve (AUC), F1 score, 

accuracy, sensitivity and specificity to quantify the precision of the models. These 

measurements vary from zero to one, where zero means no superposition between the two 

volumes, and one shows a perfect superposition between both. They were performed on the 

binarized 3D images resulting from the post-processing.

The results we obtained for the validation dataset and the testing dataset are summarized in 

the following tables.
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The average measurements of the AUC, F1 Score, accuracy, sensitivity and specificity of 

the testing dataset for the 10 folds of the cross-validation were each above 0.9 as shown in 

Tables 1 and 2, which demonstrates the precision of the automatic segmentations compared 

to the ground truth interactive segmentations. Additionally, the standard deviations 

were quite low, indicating that the automatic segmentations were very consistent and 

generalizable to unseen patients.

We selected the trained model presenting the highest F1 score when evaluating the model on 

the test dataset and used it to deploy the validated algorithm as a docker container, called 

MandSeg, in an open-source data management system, the Data Storage for Computation 

and Integration (DSCI) [21], that allows clinicians and researchers to access a secure user 

interface to compute automated segmentations for their patients or study datasets.

IV. CONCLUSION AND FUTURE WORK

The MandSeg algorithm produces accurate automated mandibular ramus and condyles 

segmentation compared to the ground truth interactive segmentation. Such an efficient 

automatic mandibular segmentation of CBCT scans will help clinicians early diagnose and 

predict TMJ disease progression by extracting imaging features of the condyle scans. We 

expect that the fully automated mandibular ramus and condyles segmentation algorithm 

presented in this study will improve accuracy in the classification of degeneration in 

the TMJs even when using the low-resolution large field of view CBCT images that are 

conventionally taken for jaw surgery planning.

The current dataset is only composed of 109 scans, coming from 4 different clinical centers 

and the trained models utilized segmentations of only the condyles and ramus, which are 

the most challenging mandibular areas to segment due to the thinness of the cortical bone 

in those anatomic regions. Our future objectives include the addition of scans from other 

clinical centers, training new deep learning models with segmentations of the full mandibles, 

and integration of the resulting automatic segmentations with other imaging modalities such 

as digital dental models for clinical applications in dentistry (Figures 5 and 6).

Acknowledgments

Grant supported by NIDCR DEO24450 and 2020 AAOF BRA award

REFERENCES

[1]. “CDC - arthritis - data and statistics.” [Online]. Available: https://www.cdc.gov/arthritis/
data_statistics/index.htm

[2]. Kalladka M, Qnek S, Heir G, Eliav E, Mupparapu M, and Viswanath A, “Temporomandibular 
joint osteoarthritis: diagnosis and long-term conservative management: a topic review,” The 
Journal of Indian Prosthodontic Society, vol. 14, no. 1, pp. 6–15, 2014. [PubMed: 24604992] 

[3]. Bianchi J, et al. “Quantitative bone imaging biomarkers to diagnose temporomandibular joint 
osteoarthritis.” International Journal of Oral and Maxillofacial Surgery 50.2 (2021): 227–235. 
[PubMed: 32605824] 

[4]. National institute of dental and craniofacial research - facial pain statistics. Available: https://
www.nidcr.nih.gov/research/data-statistics/facial-pain

Le et al. Page 5

Annu Int Conf IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2022 April 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.cdc.gov/arthritis/data_statistics/index.htm
https://www.cdc.gov/arthritis/data_statistics/index.htm
https://www.nidcr.nih.gov/research/data-statistics/facial-pain
https://www.nidcr.nih.gov/research/data-statistics/facial-pain


[5]. Schiffman E et al. Diagnostic Criteria for Temporomandibular Disorders (DC/TMD)for Clinical 
and Research Applications: recommendations of the International RDC/TMD Consortium 
Network and Orofacial Pain Special Interest Group. J. oral facial pain headache. 2014. Vol.1, 
6–27.

[6]. Bianchi J et al. Osteoarthritis of the Temporomandibular Joint can be diagnosed earlier using 
biomarkers and machine learning. Sci. Rep2020, no.1, 8012.

[7]. Yushkevich PA, Gao Y, and Gerig G, “ITK SNAP: An interactive tool for semi-automatic 
segmentation of multi-modality biomedical images,” in 2016 38th Annual Int. Conference of 
the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2016, pp. 3342–3345.

[8]. Pieper M Halle, and Kikinis R, “3D sheer,” in 2004 2nd IEEE International Symposium on 
Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821). IEEE. 2004. pp. 632–635.

[9]. Cevidanes LHS, Styner MA, Proffit Image analysis WR and superimposition of 3-dimensional 
cone-beam computed tomography models. American journal of orthodontics and dentofacial 
orthopedics. 2006. 129(5). 611–618S. [PubMed: 16679201] 

[10]. Talmaceanu D, Lenghel LM, Bolog N, Hedesiu M, Buduru S, Rotar H, Baciut M, and Baciut G, 
“Imaging modalities for temporomandibular joint disorders: an update,” Clujul Medical, vol. 91, 
no. 3, p. 280. 2018. [PubMed: 30093805] 

[11]. Verhelst P, Verstraete L, Shaheen E, Shujaat S, Darche V, Jacobs R, Swennen G, and 
Politis C, “Three-dimensional cone beam computed tomography analysis protocols for condylar 
remodelling following orthognathic surgery: a systematic review,” International Journal of Oral 
and Maxillofacial Surgery. 2020; 49(2):207–217. [PubMed: 31221473] 

[12]. Smirg O, Liberia O, and Smekal Z, “Segmentation and creating 3D model of temporomandibular 
condyle,” in 2015 38th International Conference on Telecommunications and Signal Processing 
(TSP). IEEE, 2015. pp. 729–734.

[13]. Méndez-Manión I, Haas OL Jr, Guijarro-Martínez R, de Oliveira RB, Valls-Ontañón A, and 
Hernández-Alfaro F, Semi-automated three-dimensional condylar reconstruction,” Journal of 
Craniofacial Surgery. 30(8): 2555–2559. 2019.

[14]. Xi T, Schreurs R, Heerink WJ, Berge SJ, and Maal TJ, “A novel region-growing based 
semi-automatic segmentation protocol for three-dimensional condylar reconstruction using cone 
beam computed tomography (CBCT),” PloS one. vol. 9, no. 11, p. e111126, 2014. [PubMed: 
25401954] 

[15]. Ma R.-h. et al. Quantitative assessment of condyle positional changes before and after 
orthognathic surgery based on fused 3d images from cone beam computed tomography,” Clinical 
Oral Investigations, pp. 1–10, 2020 Aug; 24(8):2663–2672. [PubMed: 31728734] 

[16]. Koç A, Sezgin ÖS and Kayipmaz S, “Comparing different planimetric methods on volumetric 
estimations by using cone beam computed tomography,”La Radiologia Medica. pp. 1–8, 2020. 
[PubMed: 31562581] 

[17]. Rasband WS ImageJ. (U. S. National Institutes of Health, 1997–2011)Æhttp://imagej.nih.gov/ij/

[18]. Brosset S et al. 3D Auto-Segmentation of Mandibular Condyles. Annu Int Conf IEEE Eng Med 
Biol Soc. 2020:1270–12

[19]. Fan Y et al. Marker-based watershed transform method for hilly automatic mandibular 
segmentation from CBCT images.Dentomaxillofac Radiol. 2019 Feb;48(2):20180261. [PubMed: 
30379569] 

[20]. Waldner F and Diakogiannis FI, 2020. Deep learning on edge: extracting field boundaries from 
satellite images with a convolutional neural network. Remote Sensing of Environment, 245, p. 
11174

[21]. DSCI. Available: https://dsci.dent.umich.edu

Le et al. Page 6

Annu Int Conf IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2022 April 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://imagej.nih.gov/ij/
https://dsci.dent.umich.edu


Figure 1 - 
Schematic diagram of the proposed method
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Figure 2 - 
An example of one raw CBCT image
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Figure 3 - 
Scan after pre-processing
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Figure 4 - 
Comparison of manual segmentations (left) and automatic segmentations (right), for two 

different cases
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Figure 5 - 
Additional training with datasets from other clinical centers for automatic segmentation of 

the lower jaw (full mandible)
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Figure 6 - 
Integration of lower jaw automatic segmentation with digital dental models for decision 

support systems in dentistry
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Table 1 -

AUC, F1 Score, accuracy, sensitivity and specificity of the validation dataset

Validation dataset AUC F1 score Sensitivity Specificity Accuracy

Average 0.955 0.907 0.923 0.9998 0.9996

Standard deviation 0.040 0.045 0.065 0.0002 0.0003
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Table 2 -

AUC, F1 Score, accuracy, sensitivity and specificity of the test dataset

Test dataset AUC F1 score Sensitivity Specificity Accuracy

Average 0.954 0.915 0.926 0.9998 0.9996

Standard deviation 0.051 0.031 0.057 0.0001 0.0003
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Abstract	
This	 paper	 proposes	 a	machine	 learning	model	 using	 privileged	 information	
(LUPI)	and	normalized	mutual	information	feature	selection	method	(NMIFS)	
to	 build	 a	 robust	 and	 accurate	 framework	 to	 diagnose	 patients	 with	
Temporomandibular	Joint	Osteoarthritis	(TMJ	OA).	To	build	such	a	model,	we	
employ	 clinical,	 quantitative	 imaging	 and	 additional	 biological	 markers	 as	
privileged	information.	We	show	that	clinical	features	play	a	leading	role	in	the	
TMJ	OA	diagnosis	and	quantitative	imaging	features,	extracted	from	cone-beam	
computerized	tomography	(CBCT)	scans,	improve	the	model	performance.	As	
the	proposed	LUPI	model	employs	biological	data	in	the	training	phase	(which	
boosted	the	model	performance),	this	data	is	unnecessary	for	the	testing	stage,	
indicating	the	model	can	be	widely	used	even	when	only	clinical	and	imaging	
data	 are	 collected.	 The	 model	 was	 validated	 using	 5-fold	 stratified	 cross-
validation	with	hyperparameter	tuning	to	avoid	the	bias	of	data	splitting.	Our	
method	 achieved	 an	 AUC,	 specificity	 and	 precision	 of	 0.81,	 0.79	 and	 0.77,	
respectively.	

Keywords:	Temporomandibular	joint,	Osteoarthritis,	Machine	learning,	
Feature	selection,	Learning	using	privileged	information	

	
	

	

	

	

	

	

	

	



	

	

	

1	Introduction	
Osteoarthritis	 (OA)	 of	 the	 temporomandibular	 joint	 (TMJ)	 is	 a	 chronic,	
degenerative	disease	that	affects	articular	cartilage,	synovial	tissue	and	osseous	
structures	of	the	condyle,	articular	eminence	and	articular	fossa	[1].	It	causes	
chronic	 pain,	 jaw	 dysfunction,	 deterioration	 of	 the	 quality	 of	 life	 and,	 in	
advanced	stages,	necessitates	joint	replacement	[2,	3].	Current	diagnosis	of	TMJ	
OA	 occurs	 primarily	 at	 moderate-severe	 stage	 of	 the	 disease,	 following	 the	
protocols	of	the	diagnostic	criteria	for	temporomandibular	disorders	(DC/TMD)	
[4,	5].	Although	various	therapeutic	measures	can	relieve	disease	symptoms	at	
these	stages,	to	date,	no	treatment	modality	can	cure	or	reverse	degenerative	
changes	 within	 the	 joint	 tissues	 [6].	 Hence,	 identification	 of	 diagnostic	
biomarkers	 that	 reflect	 early	 pathological	 changes	 of	 the	 joint	 is	 crucial	 for	
prevention	of	the	irreversible	sequelae	of	the	disease	[7].	

Animal	 studies	 indicated	 that	microstructural	 change	 of	 the	 subchondral	
bone	was	essential	 for	 the	 initiation	and	progression	of	OA	 [8].	However,	no	
robust	tools	were	available	to	assess	these	changes,	in	humans,	at	early	stages	
of	 the	disease.	More	recently,	advancement	of	 image	processing/analysis	and	
high-performance	 computing	 techniques	 allowed	 extracting	 quantitative	
imaging	 features,	 i.e.,	 radiomics,	 which	 reflect	 subtle	 changes	 within	 the	
examined	tissues	[9].	Along	with	radiomics,	the	level	of	biochemical	markers	in	
saliva	 or	 blood	 samples	 could	 reflect	 incipient	 pathological	 changes	 and	
improve	diagnosis,	severity	assessment	and	risk	of	progression	of	osteoarthritis	
[10,	 11].	 The	 potential	 of	 radiomics	 and	 biochemical	 markers	 has	 been	
elucidated	 in	 early	 detection	 of	 various	 diseases,	 including	 knee	 OA;	
nevertheless,	their	value	in	TMJ	OA	diagnosis	has	been	scarcely	investigated	[8,	
12–16].	 Our	 preliminary	 studies	 [17,	 18],	 showed	 a	 significant	 difference	 in	
radiomics	at	the	condyles’	subchondral	bone	in	TMJ	OA	and	control	subjects.	We	
also	 found	 a	 correlation	 between	 the	 resorptive/anabolic	 changes	 of	 the	
condyles	and	the	level	of	several	biological	markers	in	TMJ	OA	subjects	[19].	As	
it	is	unlikely	that	a	single	biomarker	would	drive	or	identify	a	complex	disease	
such	 as	 osteoarthritis	 [17–20],	 we	 hypothesize	 that	 clinical	 symptoms,	
subchondral	 bone	 radiomics	 and	 biological	 markers	 are	 optimal	 integrative	
indicators	of	TMJ	health	status.	

Analysis	of	large	and	complex	datasets	derived	from	different	sources	yields	
better	understanding	of	the	disease.	However,	detection	of	unknown	patterns	in	
big	 data	 requires	 the	 use	 of	 high-end	 computing	 solutions	 and	 advanced	
analytical	 approaches	 such	 as	 machine-learning	 algorithms	 [21].	 Although	
prediction	 models	 can	 analyze	 a	 large	 amount	 of	 data,	 incorporating	 less	
variables	 into	 the	 model	 reduces	 computing	 resources’	 consumption	 and	



	

prevents	model	overfitting	[22,	23].	Therefore,	using	a	dimensionality	reduction	
technique	 to	 identify	 the	optimal	 subset	of	 the	original	 features	 is	 crucial	 for	
accurate	 construction	 of	 prediction	 models	 [5,	 24].	 Another	 challenge	 for	
developing	 a	 predictive	 model	 for	 TMJ	 OA	 diagnosis	 is	 inclusion	 of	 the	
biochemical	markers.	This	 is	due	 to	 the	 restricted	 specimens’	 collection,	 cost	
and	limitations	of	protein	expression	measurement	systems	[25].	

In	 this	 study,	 we	 address	 the	 need	 for	 comprehensive	 quantitative	
phenotyping	 of	 OA	 in	 the	 whole	 jaw	 joint.	 We	 employ	 a	 machine	 learning	
paradigm	called	learning	using	privileged	information	(LUPI)	and	train	it	with	
clinical,	 quantitative	 imaging	 and	 additional	 biological	 features	 as	 privileged	
information	to	classify	TMJ	OA	patients.	We	also	adopt	feature	selection	method	
to	 remove	 redundant	 and	 irrelevant	 features	 from	 the	 feature	 space.	
Furthermore,	we	utilize	features	occurrence	and	Shapely	additive	explanations	
method	to	interpret	the	model	predictions	[26,	27].	

2	Methods	
2.1	Dataset	
Our	dataset	consisted	of	46	early-stage	TMJ	OA	patients	and	46	age	and	gender-
matched	 healthy	 controls	 recruited	 at	 the	 University	 of	 Michigan	 School	 of	
Dentistry.	 All	 the	 diagnoses	 were	 confirmed	 by	 a	 TMD	 and	 orofacial	 pain	
specialist	based	on	the	DC/TMD.	The	clinical,	biological	and	radiographic	data	
described	 below	 were	 collected	 from	 TMJ	 OA	 and	 control	 subjects	 with	
informed	consent	and	following	the	guidelines	of	the	Institutional	Review	Board	
HUM00113199.	

2.1.1	Clinical	data	
Clinical	dataset	entailed	three	features	obtained	from	diagnostic	tests	assessed	
by	the	same	investigator:	1)	headaches	in	the	last	month,	2)	muscle	soreness	in	
the	last	month,	3)	vertical	range	of	unassisted	jaw	opening	without	pain	(mouth	
opening).	

2.1.2	Biological	data	
Association	of	proteins	expression	with	arthritis	initiation	and	progression	was	
investigated	in	a	previous	study	[28].	In	this	project,	using	customized	protein	
microarrays	(RayBiotech,	Inc.	Norcross,	GA),	the	expression	level	of	13	proteins	
was	 measured	 in	 the	 participants’	 saliva	 and	 serum	 samples.	 The	 analyzed	
proteins	 included:	Angiogenin,	BDNF,	CXCL16,	ENA-78,	MMP-3,	MMP-7,	OPG,	
PAI-1,	 TGFb1,	 TIMP-1,	 TRANCE,	 VE-Cadherin	 and	 VEGF.	 As	 the	 protein	
expression	 of	 MMP3	 was	 not	 detected	 in	 the	 saliva,	 it	 was	 excluded	 from	
subsequent	analysis.	



	

2.1.3	Radiological	data	
Using	 the	 3D	Accuitomo	machine	 (J.	Morita	MFG.	 CORP	Tokyo,	 Japan),	 cone-
beam	computed	 tomography	 (CBCT)	 scans	were	performed	 for	 each	 subject.	
Radiomics	 analysis	was	 centered	 on	 the	 lateral	 region	 of	 the	 articular	 fossa,	
articular	 eminence	 and	 condyle,	 a	 site	where	 greater	 OA	 bone	 degeneration	
occurs.	 Radiomic	 features	 were	 extracted	 using	 BoneTexture	module	 in	 3D-
slicer	 software	 v.4.11(www.3Dslicer.org)	 [29].	 We	 measured	 23	 texture	
features:	 5	 bone	 morphometry	 features,	 8	 Gray	 Level	 Co-occurrence	
Matrix(GLCM)	 and	 10	 Grey-Level	 Run	 Length	 Matrix	 (GLRLM)	 features.	
ClusterShade	 and	 HaralickCorrelation	 measurements	 were	 highly	 variable	
among	 all	 participants,	 therefore,	 they	 were	 not	 included	 in	 the	 following	
analysis.	

Joint	 space	 measurement	 was	 evaluated	 using	 3D	 condylar-to-fossa	
distances	at	the	anterior,	anterolateral,	medial,	superior	and	posterior	regions.	

2.2	Statistical	and	machine	learning	approaches	
In	 this	 section,	 we	 describe	 methods	 utilized	 for	 building	 a	 robust	 TMJOA	
diagnosis	model	(Figure	1).	These	methods	include:	1)	cross-validation	and	grid	
search,	2)	feature	selection	and	3)	learning	using	privileged	information.	

2.2.1	Cross-validation	and	grid	search	
Cross-validation	is	an	effective	approach	to	model	hyperparameter	optimization	
and	model	selection	that	attempts	to	overcome	the	overfitting	issue.	The	dataset	
was	split	 into	80%	for	training	and	20%	holdout	for	testing.	The	5fold	cross-
validation	with	the	same	portion	of	data	split	was	nested	inside	the	80%	train	
dataset,	and	grid	search	was	performed	in	each	fold	of	data	for	hyperparameters	
tuning.	 The	 best	 combination	 of	 hyperparameters	 was	 picked	 based	 on	 the	
mean	and	standard	deviation	of	F1	scores	over	the	5-fold	cross-validation.	The	
overall	 procedure	 was	 repeated	 10	 times	 with	 10	 random	 seeds	 to	 avoid	
sampling	bias	from	data	partitioning.	The	final	evaluation	scores	reported	in	this	
study	 are	 the	mean±standard	 deviation	 of	 the	 holdout	 test	 set	 performance	
across	all	10	repetitions.	

2.2.2	Feature	selection	
Feature	selection	is	a	common	dimensional	reduction	technique	for	building	a	
machine	 learning	 model.	 Increasing	 the	 number	 of	 features	 often	 results	 in	
decreasing	 the	 prediction	 error.	 However,	 it	 increases	 the	 risk	 of	 model	
overfitting	 particularly	 with	 small	 datasets.	 Here,	 we	 customized	 a	 feature	
selection	method	that	takes	the	advantages	of	privileged	variables	and	mutual	
information	to	improve	the	performance	of	the	classifier.	

Normalized	mutual	 information	 feature	selection	(NMIFS)	method	and	 its	
modified	version	called	called	NMIFS+	was	used	to	measure	the	relevance	and	



	

redundancy	of	 features	with	 the	primary	objective	of	high	accuracy	with	 the	
least	possible	time	complexity	[30].	NMIFS+	extends	the	NMIFS	algorithm	with	
the	 LUPI	 framework,	 which	 could	 take	 full	 account	 of	 the	 privilege	 features	
along	with	standard	 features	and	make	 feature	selection	 from	those	two	sets	
separately	[31].	The	NMIFS+	was	applied	to	all	 the	LUPI	models	 in	this	study	
and,	correspondingly,	the	NMIFS	on	non-LUPI	models.	

	
Fig.	1	Diagram	of	training	and	testing	process	

2.2.3	LUPI	framework	
The	idea	of	learning	using	privileged	information	(LUPI)	was	first	proposed	as	
capturing	the	essence	of	teacher-student-based	learning	by	Vapnik	and	Vashist	
[32].	 In	contrast	to	the	existing	machine	learning	paradigm,	where	the	model	
learns	 and	 makes	 predictions	 with	 fixed	 information,	 the	 LUPI	 paradigm	
considers	 several	 specific	 forms	of	privileged	 information,	 just	 like	 a	 teacher	
who	 provides	 additional	 information,	 which	 can	 include	 comments,	
explanations,	and	logic	to	students	and	thus	increases	the	learning	efficiency.	

In	 the	 classical	 binary	 classification	model,	 we	were	 given	 training	 pairs	
(x1,y1),...,(xl,yl),	where	xi	∈	X,	yi	∈	{−1,1},	i	=	1,...,l,	and	each	pair	is	independently	
generated	by	some	underlying	distribution	PXY	,	which	is	unknown.	The	model	is	
trained	to	find	among	a	given	set	of	functions	f(x,α),	α	∈	∧,	the	function	y	=	f(x,α)	
that	minimizes	 the	 probability	 of	 incorrect	 classifications	 over	 the	 unknown	
distribution	PXY	.	
 In	 the	 LUPI	 framework,	 we	 were	 given	 training	 triplets	
(x1,x∗1,y1),...,(xl,x∗l,yl),	xi	∈	X,	x∗i	∈	X∗,	yi	∈{−1,1},	i	=	1,...,l	,	which	is	slightly	different	
from	 the	 classical	 one.	 Each	 triplet	 is	 independently	 generated	 by	 some	
underlying	distribution	PXX∗Y	,	which	is	still	unknown.	The	additional	privileged	
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information	is	available	only	for	the	training	examples,	not	for	the	test	phase.	In	
this	scenario,	we	can	utilize	X∗	to	improve	learning	performance.	

There	are	a	few	implementations	of	LUPI	models.	One	of	them	is	based	on	
random	vector	functional	link	network	(RVFL)	that	is	a	randomized	version	of	
the	 functional	 link	 neural	 network	 [33,	 34].	 A	 kernel-based	 RVFL,	 called	
KRVFL+,	has	been	proposed	based	on	the	LUPI	paradigm	[35].	It	incorporates	
efficient	 ways	 to	 use	 kernel	 tricks	 for	 highly	 complicated	 nonlinear	 feature	
training	and	 train	RVFL	networks	with	privileged	 information	 (Figure	2).The	
parameters,	 including	weights	and	biases,	 from	the	 input	 layer	 to	 the	hidden	
layers	are	generated	randomly	from	a	fixed	domain,	and	only	the	output	weights	
need	to	be	computed.	

	
Fig.	2	The	architecture	of	KRVFL+	network.	Solid	lines	are	output	weights	and	dash	lines	stand	for	
random	weights	and	biases.	

3	Results	
3.1	LUPI	and	non-LUPI	models	
Figure	3	shows	the	comparison	of	the	classification	performance	between	LUPI	
and	non-LUPI	models.	We	evaluated	the	diagnostic	potential	of	imaging	features	
extracted	from	the	articular	eminence,	articular	fossa,	condyle,	and	joint	space	
measurement,	as	well	as	clinical	features.	Only	the	clinical	feature	sets	provided	
discriminative	models	(AUC=0.723)	for	TMJ	OA	diagnosis.	By	introducing	LUPI-
based	models	with	additional	biological	 features,	LUPI	paradigm	significantly	
enhanced	 the	 model	 performance	 on	 clinical	 (AUC=0.794),	 joint	 space	
measurement	(AUC=0.625),	and	condyle	(AUC=0.641)	datasets.	



	

	
Fig.	3	Comparison	of	LUPI	and	non-LUPI	models.	The	non-LUPI	models	only	trained	with	normal	
features	and	RVFL	model.	The	LUPI	model	 trained	with	KRVFL+	and	biological	data	as	privilege	
information.	

3.2	Feature	integration	comparison	
Table	1	shows	the	classification	performances	with	different	feature	integration	
strategies.	Given	that	clinical	features	had	strong	discriminative	power	for	TMJ	
OA	 diagnosis,	 two	 groups	 of	 experiments	were	 conducted	 to	 investigate	 the	
effect	of	an	enlarged	candidate	pool	for	feature	selection.	Adding	more	features	
into	the	clinical	dataset	and	selecting	from	combined	set	improved	the	model	
performance	 markedly,	 i.e.,	 the	 models	 had	 higher	 AUC	 scores.	 With	 an	
AUC=0.794,	 the	 clinical	 feature	 model	 achieved	 fairly	 well	 performance.	
Selecting	features	from	a	pool	of	condyle	radiomic	features	together	with	the	
clinical	features	increased	the	AUC	score	to	0.804.	The	performance	was	even	
higher	when	feature	selection	was	conducted	on	all	condyle,	3D	measurements	
and	 clinical	 datasets,	 AUC=0.807.	 Keeping	 all	 clinical	 criteria	 and	 applying	
feature	 selection	 on	 the	 remaining	 dataset	 resulted	 in	 slightly	 higher	 AUC	
values.	The	AUC	scores	became	0.808	and	0.809	 for	 the	condyle	and	condyle	
with	additional	3D	measurement	features	models,	respectively.	

	

	



	

	

Table	1	Comparison	of	different	feature	integration	methods	(in	percentage	%)	

Feature	Set	 AUC	 F1	score	 Accuracy	 Sensitivity	 Specificity	 Precision	
Cl	 79.4±3.4	 65.7±12.7	 69.9±7.2	 62.2.0±19.8	 77.6±12.0	 76.8±7.8	
(Cl+Cd)*	 80.4±3.8	 67.5±9.4	 70.4±5.6	 64.4±18.6	 76.4±16.0	 76.1±9.2	
Cl+Cd*	 80.8±4.1	 64.8±11.6	 69.4±6.4	 60.2±19.4	 78.7±13.5	 76.0±9.3	
(Cl+Cd	JS)*	 80.7±3.8	 64.2±15.0	 69.8±6.9	 61.3±22.9	 78.2±15.3	 75.1±12.2	
Cl+Cd	JS*	 80.9±3.6	 66.1±12.2	 70.9±6.0	 62.7±19.7	 79.1±13.6	 77.4±9.8	

Cl:	Clinical;	Cd:	Condyle;	Cd	 JS:	Condyle	and	3D	Joint	Space	measurements.	
*	indicates	feature	selection	by	NMIFS+	method.	
The	feature	sets	in	parentheses	have	been	pooled	together	for	feature	selection,	otherwise	it	proceeded	on	
feature	set	with	*	separately.	
All	the	models	have	been	trained	with	KRVFL+	with	Biological	data	as	privilege	information.	

3.3	Feature	occurrence	and	importance	
To	 interpret	 the	 prediction	 of	 our	 proposed	 model,	 we	 utilized	 feature	
occurrence	and	Shapley	values.	The	NMIFS+	method	is	a	measure	of	redundancy	
among	features.	The	calculation	of	mutual	information	and	redundancy	highly	
depends	 on	 the	 training	 samples	 which	 varied	 from	 split	 to	 split.	 Feature	
occurrence	means	how	many	times	a	feature	was	selected	by	NMIFS+	method	
among	the	total	50	models.	The	more	times	a	feature	occurs,	the	more	reliable	
its	 importance	 is	 (Figure	 1 A).	 Shapley	 values	 were	 used	 to	 interpret	 the	
contribution	 of	 individual	 features	 into	 the	 prediction	 of	 the	 trained	model.	
Contributing	features	are	shown	in	Figure	4B	according	to	the	order	of	the	mean	
absolute	of	Shapley	values	across	all	the	data,	which	indicate	the	average	impact	
of	feature	on	model	output	magnitude.	Figure	4C	provides	further	indication	of	
Shapley	 values	 and	 shows	 the	 complexity	 of	 feature	 contribution	 in	models.	
Each	circle	represents	a	feature	value	of	one	patient/control,	either	increases	or	
decreases	 the	 prediction(positive	 value	 and	 negative	 value).	 Figure	 4D	
combines	feature	importance	with	feature	effects.	Here	we	picked	one	model	for	
visualization	 instead	 of	 pulling	 all	 50	 models	 together.	 Each	 point	 in	 the	
summary	plot	is	a	Shapley	value	for	a	feature	and	a	patient/control.	The	order	
of	the	features	on	the	y-axis	is	based	on	their	importance.	The	color	represents	
the	Shapley	value	of	the	features	from	low	to	high.	We	divided	the	instances	into	
TMJOA	 diseased	 group	 and	 Control	 group,	 displayed	 in	 different	 markers.	
Higher	 values	 of	 headache,	 LongRunHighGreyLevelRunEmphasis	 and	muscle	
soreness	increased	the	probability	of	assigning	TMJ	OA	diagnosis.	

	
	



	

	
Fig.	 4	A.	 Feature	 occurrence	 in	 50	 trained	models	 using	 NMIFS	method.	 B.	 Feature	 importance	
measured	as	the	mean	absolute	Shapley	values	in	50	models.	C.	Distribution	of	Shapley	values	in	
each	query	point	in	the	50	models.	The	order	of	the	features	shown	in	the	x-axis	is	based	on	the	
feature	occurrence.	D.	Shapley	summary	plot	for	one	model.	The	boxplots	represent	the	distribution	
of	TMJOA	and	control	groups	(each	TMJOA	patient	is	shown	as	a	circle	and	control	as	a	diamond).	
The	Heatmap	color	bar	shows	the	value	of	the	feature	itself	from	high	to	low	(yellow	to	blue).	Low	
number	 of	 Shapley	 value	 of	 features	 reduce	 the	 predicted	 TMJOA	 diseased	 probability,	 a	 large	
number	of	Shapley	value	increase	the	probability.	

4	Discussion	
This	study	developed	an	enhanced	model	for	TMJ	OA	diagnosis,	utilizing	state-
of	 the	 art	machine	 learning	 technology	 and	 considering	 clinical,	 quantitative	
imaging	markers,	and	additional	biological	features	used	only	for	training.	This	
is	 the	 first	 study	 to	 utilize	 quantitative	 imaging	markers	 of	 the	whole	 joint:	
condyle,	articular	space,	articular	fossa	and	articular	eminence.	We	employed	
feature	selection	to	minimize	feature	sets	and	improve	the	model	robustness.	
Furthermore,	feature	occurrence	and	Shapley	value	were	assessed	to	reduce	the	
black-box	nature	of	the	machine	learning	model,	as	well	as	improve	the	domain	
experts’	confidence	in	the	model’s	prediction.	This	study	findings	demonstrate	
excellent	performance	of	the	feature	integration	methods	and	LUPI	paradigm	
in	predicting	TMJ	OA	status.	



	

	
The	 Diagnostic	 Criteria	 for	 Temporomandibular	 Disorders	 (DC/TMD)	 have	
been	the	most	utilized	protocol	for	TMJ	OA	diagnosis.	However,	these	criteria	
are	 dependent	 on	 subjective	 clinical	 signs/symptoms	 and	 subjective	
radiological	 interpretation	 of	 imaging	 features	 associated	 with	 irreversible	
bone	 changes	 [4,	 5].	 Early	 treatment	 and	modification	 of	 the	 disease	 course	
requires	 precise	 diagnosis	 of	 TMJ	OA	 at	 initial	 stages	 [36].	 In	 this	 study,	we	
utilized	multi-source	data	collected	from	subjects	at	early	stages	of	TMJ	OA.	We	
employed	 the	 LUPI	 paradigm	 and	 used	 biological	 features	 of	 inflammation,	
neuroception,	bone	resorption	and	angiogenesis	as	privileged	information.	The	
LUPI	 algorithm	 allowed	 benefiting	 from	 diagnostic	 information	 within	 the	
existing	 biological	 data	 and	 eliminated	 future	 need	 for	 biological	 samples’	
collection	and	analysis.	 Inclusion	of	biological	data	with	 the	LUPI	 framework	
boosted	our	model	performance,	confirming	the	need	for	biological	data	only	
for	 model	 training.We	 developed	 a	 robust	 model	 for	 TMJ	 OA	 diagnosis	 and	
validated	 its	performance	using	 extensive	 evaluation	metrics	 (Figure	1).	Our	
model	demonstrated	sensitivity	and	specificity	of	63%	and	79%,	respectively.	
These	values	exceeded	the	sensitivity	and	specificity,	58%	and	72%,	of	TMJ	OA	
diagnosis	 following	 DC/TMD	 protocol	 without	 imaging	 [4].	 Honda	 and	
colleagues	[37]	reported	that	the	CBCT	scan’s	use	improved	the	sensitivity	and	
specificity	for	detecting	condylar	osseous	defects	to	80%	and	90%,	sequentially.	
Nevertheless,	CBCT	sensitivity	is	dependent	on	the	defects’	size,	it	is	challenging	
to	 detect	 early	 alterations	 that	 are	 <2mm.	 Hence,	 we	 extracted	 objective,	
quantitative	 imaging	 features	 from	 the	 subchondral	 bones	 of	 the	 condyle,	
articular	fossa	and	articular	eminence.	Using	the	LUPI-based	model,	we	found	
that	only	condyle’s	radiomics	could	differentiate	between	healthy	and	diseased	
subjects	(Table	1).	In	line	with	this	observation,	Massilla	and	Sivasubramanian	
[38]	 reported	 that	 patients	 with	 early	 TMJ	 OA	 had	 osteoarthritic	 bone	
alterations	 in	 their	 condyles	 (69.93%)	more	 than	 articular	 fossa	 (10%)	 and	
articular	eminence	(6.6%).	 Interestingly,	we	noted	 that	 the	superior	3D	 joint	
space	 distinguished	 TMJ	 OA	 subjects	 using	 LUPI-based	 models	 (AUC=.63),	
denoting	the	importance	of	this	feature	in	detecting	osteoarthritic	changes.	In	
fact,	in	another	study	[38],	joint	space	narrowing	was	the	second	predominant	
radiographic	sign	observed	in	patients	with	early	TMJ	OA.	Along	with	radiomics	
and	joint	space	measurements,	we	supplemented	the	model	with	clinical	signs	
that	were	measurable	in	both	groups.	Elimination	of	leaky	variables	prevents	
biasing	the	model	and	promotes	its	reliability	and	well	generalization	with	new	
data	[39].	

Machine	 learning	 models	 are	 leveraged	 for	 clinical	 predictive	 modeling,	
where	 clinical	 values	 are	 used	 to	 predict	 clinical	 diagnosis.	 However,	 these	
models	 do	 not	 explain	 the	 basis	 for	 their	 prediction.	 This	 raise	 concerns	 in	
medical	 domains	 and	 challenge	 researchers	 to	 identify	 reasons	 behind	 the	
model	outcomes	[40].	Here,	we	facilitated	the	interpretability	of	our	model	by	
reducing	the	number	of	candidate	features.	In	general,	for	a	fixed	sample	size,	



	

the	error	of	designed	classifier	decreases	and	then	increases	as	the	number	of	
feature	 grows.	 Finding	 an	 optimal	 number	 of	 features	 is	 crucial	 in	 terms	 of	
reducing	the	time	to	build	the	learning	model	and	increasing	the	accuracy	in	the	
learning	 process.	 For	 uncorrelated	 features,	 the	 optimal	 feature	 size	 is	 N-1,	
where	the	N	is	the	sample	size.	As	the	feature	correlation	increases,	the	optimal	
feature√size	 becomes	 proportional	 to	N	 for	 highly	 correlated	 features	 [41].	
Furthermore,	texture	features	turned	out	to	be	highly	correlated	in	Cho’s	work	
[42].	Those	further	proof	of	the	necessity	of	feature	selection.	

Using	the	NMIFS	method,	we	calculated	feature	occurrence	to	identify	the	
discriminative	features	of	TMJ	OA.	Moreover,	we	calculated	Shapley	values	to	
demonstrate	 how	 each	 clinical	 and	 imaging	 feature	 is	 contributing	 to	 the	
outcome/disease	diagnosis	 in	 individual	patients.	Headache,	muscle	soreness	
and	limited	range	of	vertical	mouth	opening	without	pain	were	among	the	top	
features	that	contributed	to	the	model	prediction	for	TMJ	OA.	This	aligns	with	
the	 common	 observation	 of	 these	 symptoms	 in	 individuals	 with	 painful	
temporomandibular	disorders	[43].	TrabecularNumber,	superior	3D	joint	space	
and	 LongRunHighGreyLevelRunEmphasis	 were	 the	 top	 imaging	 features	
selected	in	the	majority	of	the	trained	models.	Importanly,	the	amalgamation	of	
different	data-sources	in	this	study	is	essential	for	comprehensive	assessment	
of	 individuals’	 health.	 In	 line	 with	 our	 results,	 Liang	 and	 colleagues	 found	
significant	 differences	 of	 the	 TrabecularNumber	 in	 subjects	 with	 TMJ	 OA	
compared	 to	 healthy	 individuals	 [44].	 Our	 findings	 corroborate	 those	 that	
indicate	radiomics	provide	an	objective	assessment	of	the	pathological	changes	
and	 may	 overcome	 the	 subjectivity	 of	 patients-reported	 symptoms	 [45].	
Previous	studies	have	reported	joint	space	narrowing	in	subjects	with	TMJ	OA	
[46,	 47].	 Zhang	 et	 al.	 [48]	 validated	 the	 importance	 of	 detecting	 TMJ	
morphological	changes	using	3D	measurements,	showing	that	2D	and	3D	TMJ	
space	measurements	varied	significantly	in	CBCT	scans	of	healthy	individuals.	
The	present	study	is	the	first	to	test	whole	joint	(condylar,	articular	eminence	
and	articular	 fossa)	 radiomics	and	 incorporate	3D	 joint	 space	measurements	
into	a	comprehensive	diagnostic	tool	for	TMJ	OA.	

5	Conclusion	
Normalized	mutual	 information	 feature	selection	method	and	LUPI	paradigm	
established	 a	 robust	model	 for	 TMJ	OA	 diagnosis.	 The	 identified	 clinical	 and	
quantitative	 imaging	 markers	 can	 be	 considered	 a	 foundation	 for	 reliable	
detection	 of	 TMJ	 OA	 pathological	 alterations	 and	 are	 potential	 markers	 for	
prediction	of	disease	progression	in	future	longitudinal	studies.	
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ABSTRACT 
In this paper we propose feature selection and machine learning approaches to identify a combination of features for risk 
prediction of Temporomandibular Joint (TMJ) disease progression. In a sample of 32 TMJ osteoarthritis and 38 controls, 
feature selection of 5 clinical comorbidities, 43 quantitative imaging, 28 biological features and was performed using 
Maximum Relevance Minimum Redundancy, Chi-Square and Least Absolute Shrinkage and Selection Operator (LASSO) 
and Recursive Feature Elimination. We compared the performance of learning using concave and convex kernels 
(LUCCK), support vector machine (SVM) and random forest (RF) approaches to predict disease cure/improvement or 
persistence/worsening. We show that the SVM model using LASSO achieves area under the curve (AUC), sensitivity and 
precision of 0.92±0.08, 0.85±0.19 and 0.76 ±0.18, respectively. Baseline levels of headaches, lower back pain, restless 
sleep, muscle soreness, articular fossa bone surface/bone volume and trabecular separation, condylar High Gray Level Run 
Emphasis and Short Run High Gray Level Emphasis, saliva levels of 6Ckine, Osteoprotegerin (OPG) and Angiogenin, and 
serum levels of 6ckine and Brain Derived Neurotrophic Factor (BDNF) were the most frequently occurring features to 
predict more severe TMJ osteoarthritis prognosis. 

Keywords: Temporomandibular Joint Osteoarthritis, disease progression, feature selection, machine learning 
 

1. INTRODUCTION 

Osteoarthritis (OA) of the Temporomandibular joint (TMJ) is a prevalent progressive disorder characterized by chronic 
joint degradation. Rapidly progressive OA may involve multiple joints [1] and severe stages require joint replacement [2]. 
Assessments of OA have focused on disk and cartilage degradation with no symptom or test that predict the risk of severe 
prognosis [3]. The bone of the mandibular condyles is located just beneath the fibrocartilage, making it particularly 
vulnerable to inflammatory damage and a valuable model for studying arthritic changes. It is unlikely a single marker 
would drive this intricate disease. No disease-modifying therapy exists.  

Based on our published results [4,5] we hypothesize that patterns of clinical symptoms, TMJ bone structure and biological 
mediators are unrecognized indicators of the severity of progression of TMJ OA. Selecting the combination of features 
that optimizes the performance of machine learning/statistical models is an important task. Many feature selection methods 
have been proposed in literatures and here we compare filter-based method (Chi-Square), a filter algorithm called 
Maximum Relevance Minimum Redundancy (mRMR) that uses mutual information criteria as a measure of both relevance 
and redundancy of features to quantify nonlinear relationships between variables, a wrapper-based algorithm called 
Recursive Feature Elimination (RFE), and Least Absolute Shrinkage and Selection Operator (LASSO), a method that 
applies a shrinking/regularization process and feature selection. We then evaluate the performance metrics of Learning 
Using Concave and Convex Kernels (LUCCK), Support Vector Machine (SVM) and Random Forest (RF) for classifying 
the patients at risk of severe prognosis. 
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2. METHODS 

This study followed the “Strengthening the Reporting of Observational studies in Epidemiology” (STROBE) guidelines 
for observational studies and was approved by the Institutional Review Board HUM00113199 from the University of 
Michigan and the informed consent was obtained from all participants. The longitudinal sample consisted of 32 early-
stage TMJ OA patients and 38 healthy controls recruited at the University of Michigan School of Dentistry with a 2.5 ± 
0.9 y follow up interval between the subjects’ assessments. All subjects were examined by a Temporomandibular Disorder 
(TMD) and orofacial pain specialist based on the diagnostic criteria for TMD. The clinical symptoms features entailed 5 
comorbidities obtained from diagnostic questionnaire and exam by the same investigator: 1) headaches in the last month, 
2) muscle soreness in the last month, 3) vertical range of unassisted jaw opening without pain (mouth opening), 4) restless 
sleep and 5) lower back pain. Using the 3D Accuitomo cone-beam computed tomography (CBCT, J. Morita MFG. CORP 
Tokyo, Japan), TMJ scans were performed for each subject to analyze the TMJ bone structure. The joint space was 
measured at the most superior region of the fossa. Radiomics analysis was centered on the lateral region of the articular 
fossa and condyle, sites where greater OA bone degeneration occurs. Twenty-one radiomic features in the articular fossa 
and in the condyle were extracted using the BoneTexture module in 3D Slicer software v.4.11 (www.3Dslicer.org) 
including 5 bone morphometry features, 6 Gray Level Co-occurrence Matrix (GLCM) and 10 Grey-Level Run Length 
Matrix (GLRLM) features. The biologic mediators were evaluated using customized protein microarrays (RayBiotech, 
Inc. Norcross, GA), which determines the expression level of 14 proteins was measured in the participants’ saliva and 
serum samples. The analyzed proteins included: 6Ckine, Angiogenin, BDNF, CXCL16, ENA-78, MMP-3, MMP-7, OPG, 
PAI-1, TGFb1, TIMP-1, TRANCE, VE-Cadherin and VEGF. As MMP3 measures were below the level of detection in 
saliva, it was excluded from subsequent analysis. The criteria for determining health status at the follow-up evaluation was 
scored as 0 (healthy), 1 (improved), 2 (same) or 3 (worsened). These scores were based on the level of clinical pain related 
symptoms compared to baseline levels, radiographic signs of the disease (subchondral cyst, erosion, osteophyte) assessed 
by 2 radiologist experts and 3D degenerative morphological changes. Since the small and unbalanced sample size of 4 
categories (4 worsened, 11 same, 9 improved, 8 healthy after treatment) are not sufficient for cross-validation and 
modeling, we binarized the follow-up evaluation score by combining healthy and improved categories as one group, and 
same and worsened groups as the other group. The 38 non-TMJ controls have also been included in the training phase, 
while we only report the evaluation scores on patients with treatment in the results section. Towards building a robust 
model for TMJ OA prognosis model we performed: 1) stratified cross-validation and grid search, 2) comparison of feature 
selection methods and 3) comparison of machine learning approaches.  

2.1 Cross-validation 

The dataset was shuffled randomly and stratified split into 80% for training and 20% for testing based on the severity of 
disease progression and diagnosis at baseline visit. We performed 5-fold cross-validation and the grid search was 
performed in each fold of data for hyperparameters tuning, based on the mean and standard deviation of F1 scores. The 
overall procedure was repeated 10 times with different random seeds for shuffling to avoid sampling bias and overfitting 
from data partitioning. The final evaluation scores reported in this study are the mean ± standard deviation of the test set 
performance on 10 times 5-fold cross-validation.  

2.2 Feature Selection 

We have collected and measured 76 features from our dataset. To improve the efficiency of training, enhance accuracy of 
the models and reduce the complexity of models, we performed feature selection and chose a subset of features. These 
methods are roughly divided into three categories: 1) filter based methods which select features independently from the 
learning process, 2) wrapper based methods which are based on the learning procedure and perform greedy search by 
evaluating different combinations of features against an evaluation criterion and 3) embedded methods which integrate 
feature selection and training of the model. Four feature selection methods were chosen, considering the effectiveness and 
complexity and covering primary methodologies. 1) Maximum relevance and minimum redundancy (mRMR) method [6] 
is a filter based method that tends to select a feature subset based on the importance of features and least correlation among 
them. The relevancy is calculated by mutual information and the redundancy is implemented by Pearson correlation; 2) 
Chi-Squared [7] is another filter-based method which calculates the chi-squared metric between each feature and the 
prediction target. It tests whether the occurrences of a specific feature and a specific class are independent. Then top-
ranking features with maximum chi-squared values are selected which are highly dependent on the prediction target for 
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modeling; 3) Recursive feature elimination [8] is a wrapper-based method which selects features by recursively eliminating 
the number of features. The ranking of feature weights is obtained by training a classifier on the initial feature set and then 
low ranked features are removed. The procedure is repeated recursively until it achieves the optimum number of features 
needed to assure peak performance; 4) LASSO [9] regression is an embedded method using 𝑙1-norm as regularizer. The 
objective of LASSO is to solve (1) where N and p are the number of samples and features respectively, X is the feature 
vector, 𝛽 is the coefficient vector. An important property of LASSO norm regularizer is that it could generate an estimation 
of penalty with exact zero coefficients, which denotes that the corresponding feature is eliminated. The parameter λ 
controls the strength of the shrinkage, where the higher the value of λ, the fewer features are selected with non-zero 
coefficient value.  

(1)  

 
2.3 Machine learning approaches 

Although there are many machine learning classifiers, in this paper, the performance of three of them was tested on our 
dataset including RF, SVM and LUCCK, as they learn patterns in data with different approaches. Random forest [10] is 
an ensemble learning method for classification that operates by combining multiple decision trees at the training time and 
outputs the class selected by most trees. The decision tree recursively partitions the given dataset into two groups based 
on a certain criterion until a predetermined stopping condition is met. However, this method is prone to overfitting, 
especially for decision trees when they perfectly classify the training data. The bootstrap aggregating method and 
randomization in the data nodes selection process prevent overfitting and improve the performance of a single decision 
tree. SVM is based on statistical learning theory which finds an optimal hyperplane by minimizing the norm of a vector 
that defines the separating hyperplanes [11]. The basic intuition of SVM is finding a hyperplane that best separates the 
datapoints into different classes. In real word, the data might be noisy and the presence of a few outliers can lead to 
overfitting and eventually misclassification. SVM can work with a hyperplane that separates most but not all datapoints, 
which is called soft margin, to deal with outliers and provide a generalized robust model. LUCCK [12] is a recently 
developed classification method that highlighted on its ability of complex data. The algorithm could use vital feature-
specific information to determine the complex pattern of changes in the data with adjusted concavity or convexity of 
similarity function, and then adjust the importance of each feature for the classifier. SVM and RF give fixed weight for 
each feature across all individuals, and LUCCK, which gives dynamic weight to each feature depending on the context of 
the prediction target.  

3. RESULTS 

We implemented three machine learning models by incorporating four feature selection methods. We calculated six metrics 
to compare these models and summarized the results in heatmap tables. Figure 1 shows the heatmap comparison of 
LUCCK, SVM and RF predictive models with each feature selection method.  

Figure 1. Heatmaps of the performance of the feature selection methods and machine learning approaches tested. The color code dark 
green to red indicated respectively lower to improved performance.  
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We evaluated the predictive risk of TMJ OA cure/improvement or persistence/worsening of clinical comorbidities, imaging 
features extracted from the articular fossa, condyle, and joint space as well as biological features. The best performance 
was obtained with the SVM model using LASSO that achieved AUC, sensitivity and precision of 0.92±0.08, 0.85±0.19 
and 0.76±0.28, respectively. 

Figure 2 allows the visualization of the predictive performance separately for each feature selection method and machine 
learning approach. LASSO and MRMR are the top performing feature selection methods when considering the AUC, F1 
score and sensitivity. SVM presents stronger performance in terms of AUC, F1 score, sensitivity, and accuracy with 
slightly lower precision than RF. LUCCK outperformed RF in items of sensitivity using any feature selection method. 

 
Figure 2. A. Graphic visualization of performance of each feature selection method. B. Graphic visualization of the performance of 

each machine learning approach. 

To interpret the prediction of our proposed model, we utilized feature occurrence which calculates the number of times a 
feature is selected by the SVM model using LASSO among the total 50 models. The more often a feature occurs, the more 
reliable its importance is. Contributing features are shown in Table 1 according to the feature occurrence, which indicates 
the impact of each feature on the model performance. According to the order of features in Table 1, higher values of 
headache, LongRunHighGreyLevelRunEmphasis and muscle soreness increased the probability of assigning TMJ OA 
diagnosis. Baseline levels of headaches, lower back pain, restless sleep, muscle soreness, articular fossa bone surface/bone 
volume and trabecular separation, condylar HighGreyLevelRunEmphasis and ShortRunHighGreyLevelEmphasis, saliva 
levels of 6Ckine, OPG and Angiogenin, and serum levels of 6ckine and BDNF were the most frequently occurring features 
in the SVM model using LASSO to predict more severe TMJ OA prognosis. 
 

 
Table 1. Times of occurrence showing how many times a feature was selected by the SVM model using LASSO. 

4. CONCLUSION 
In this paper we proposed three machine learning models and four feature selection methods to predict the progression of 
TMJ OA disease. We designed 5-fold cross validation and calculated the feature occurrence to determine which features 
have stronger predictive power. The SVM predictive model of TMJ OA using LASSO for feature selection achieved AUC, 
sensitivity and precision of 0.92±0.08, 0.85±0.19 and 0.76±0.18, respectively. Baseline levels of headaches, lower back 
pain, restless sleep, muscle soreness, articular fossa bone surface/bone volume and trabecular separation, condylar 
HighGreyLevelRunEmphasis and ShortRunHighGreyLevelEmphasis, saliva levels of 6Ckine, OPG and Angiogenin, and 
serum levels of 6ckine and BDNF were the most frequently occurring features in the SVM model using LASSO to predict 
more severe TMJ OA prognosis. 
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